If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6p2 + 14p + 6 = 0 Reorder the terms: 6 + 14p + 6p2 = 0 Solving 6 + 14p + 6p2 = 0 Solving for variable 'p'. Factor out the Greatest Common Factor (GCF), '2'. 2(3 + 7p + 3p2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(3 + 7p + 3p2)' equal to zero and attempt to solve: Simplifying 3 + 7p + 3p2 = 0 Solving 3 + 7p + 3p2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 1 + 2.333333333p + p2 = 0 Move the constant term to the right: Add '-1' to each side of the equation. 1 + 2.333333333p + -1 + p2 = 0 + -1 Reorder the terms: 1 + -1 + 2.333333333p + p2 = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 2.333333333p + p2 = 0 + -1 2.333333333p + p2 = 0 + -1 Combine like terms: 0 + -1 = -1 2.333333333p + p2 = -1 The p term is 2.333333333p. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333p + 1.361111112 + p2 = -1 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333p + p2 = -1 + 1.361111112 Combine like terms: -1 + 1.361111112 = 0.361111112 1.361111112 + 2.333333333p + p2 = 0.361111112 Factor a perfect square on the left side: (p + 1.166666667)(p + 1.166666667) = 0.361111112 Calculate the square root of the right side: 0.600925213 Break this problem into two subproblems by setting (p + 1.166666667) equal to 0.600925213 and -0.600925213.Subproblem 1
p + 1.166666667 = 0.600925213 Simplifying p + 1.166666667 = 0.600925213 Reorder the terms: 1.166666667 + p = 0.600925213 Solving 1.166666667 + p = 0.600925213 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + p = 0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + p = 0.600925213 + -1.166666667 p = 0.600925213 + -1.166666667 Combine like terms: 0.600925213 + -1.166666667 = -0.565741454 p = -0.565741454 Simplifying p = -0.565741454Subproblem 2
p + 1.166666667 = -0.600925213 Simplifying p + 1.166666667 = -0.600925213 Reorder the terms: 1.166666667 + p = -0.600925213 Solving 1.166666667 + p = -0.600925213 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + p = -0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + p = -0.600925213 + -1.166666667 p = -0.600925213 + -1.166666667 Combine like terms: -0.600925213 + -1.166666667 = -1.76759188 p = -1.76759188 Simplifying p = -1.76759188Solution
The solution to the problem is based on the solutions from the subproblems. p = {-0.565741454, -1.76759188}Solution
p = {-0.565741454, -1.76759188}
| (n+3)*4=32 | | x^2-10x+18=0 | | x^2-10x=24 | | 9x-2x+10=7x+10 | | 9x-2x=7x+10 | | 2-5(3t-3)=-73 | | 5x^2=35 | | 3x(x)=30 | | 9x-8=-3x+20 | | 2(2x-4)=3(x+4) | | 9x-8=-3+20 | | abc=c | | 9d+1=8d-15 | | 5+3x=15+x | | (x-4)-(x+7)=8x | | 27(x-108)=54 | | 4x-4=11x-74 | | 8=7y-13 | | 11-19m=-16m-16 | | 3x+12-9x=12-6x | | x+-4=9 | | 2(4-x)-6=20 | | X^4=5x^2+14 | | X^4-5x^2-14=0 | | 15x-12=8x+2 | | 8-3n=4 | | 8-2x=26 | | 8c+4=8c-6 | | 3k-8=5-(4k-8) | | 3(n-6)=2+2n | | 4+3x=20-5x | | -50-8x=10x+22 |